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u Introduction - basic experimental observations

u RMF Drive Consistent With FRC Equilibrium

u STX Experiments

u What It All Means & Continuing Investigations
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RMF Current Drive

u ‘Drag’ Electrons Along With  Rotating Radial Field
– Must have ωci < ω << ωce for electrons, but not ions, to follow rotation

u Electrons Magnetized on Rotating Field Lines  (ωceτ >> 1)
– Necessary for efficient current drive
– Absolutely necessary for rotating field penetration

RMF antenna
Iz = Iosinωt

RMF antenna
Iz = Iocosωt

Bz field coils

driven electron current rotating field Bω
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Summary of Basic Physics
u RMF flux build-up and sustainment is made possible by

synchronous electron current drive which allows penetration.

u Penetration is possible when RMF force, 2Bω
2/µor, exceeds

resistive drag, nemeν⊥ωr, which we characterize as

u If γ > λ then penetration will proceed just far enough to reverse
the external confinement field.  Current is sustained on the inner
field lines by induced inward flow.

u High FRC 〈β〉 and low separatrix density results in narrow edge
current layer.  There is a delicate balance between having too few
and too many electrons.
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RMF Penetration Calculations
for Simple Fixed Column

 rs = 20 cm,  ne = 0.25x1014 cm-3,  ω = 106 s-1,   Bω = 50 G

Te = 100 eV,  η = 10 µΩ-m (10x classical)

t=400 µsec t=800 µsect=0 µsec

t=1600 µsec t=2000 µsect=1200 µsec

λ = 45

γ = 100
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Flinders 10l  Rotamak

RMF penetration adjusts
to provide current
necessary to maintain
equilibrium
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Flinders 50 l Rotamak

RMF flux drive pushes FRC
against plasma tube wall
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STX RMF Driven FRC
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STX Measured Axial and RMF Fields

Bθ

φp = 0.37
mWb

Flux conserver causes external field to increase as FRC expands.

In this experiment separatrix, rs ≈ 20.7 cm, is slightly outside plasma tube wall, rw
= 20 cm, but density is essentially zero there (βs ≈ 0).

Internal field exceeds external field due to RMF field contribution.
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Density and Bz Profiles Consistent
With high 〈β〉, low n(rs), & j =neωr
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RMF Penetration Calculation
Including FRC Quasi 2-D Dynamics

t = 15 µµsec t = 25 µµsec t = 37.5 µµsec

t = 50 µµsec t = 62.5 µµsec t = 75 µµsec

Initially

λ = 35

 γ = 155

Finally

λ = 35

 γ = 47
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Analytic Model Can Give Forces
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RMF Radial Pressure Gradient

u Fr = -〈jzBθ〉

u Analytic solution for edge current layer:

u Jz and Bθ π/4 out of phase so

u Resultant radial pressure                                        is strong.

u This is in addition to 〈jzBr〉 that counters diffusion:
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Average Torque Based
Calculation of Flux Build-up
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Flux build-up continues until λ ~> γ (due
to field compression and density
increase).  Results in large xs.
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Details of Steady Solution
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u True steady state requires Eθ = 0
everywhere.

u ‘Quasi-2D’ numerical solution shows
how this can occur due to overall
inward flow, with RMF current drive
only in outer edge.

u Calculation duplicates measured Bz(r)
profile.

u Numerical flux build-up rate ≈ simple
analytic rate for stipulated η⊥ = 40 µΩ-
m.

rezzer BvBvjE −+η= θ⊥θ



ICC_2000

STX Experiments
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Rapid Flux Build-up From Fully
Ionized (decayed FRC) Plasma Column
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u Flux builds up to 0.37 mWb in 100 µsec in agreement with calculations.

u Flux then decays slowly:  most likely due to overheating and too low a density to
produce current reversal in equilibrium edge layer, or to inability to sustain inward vr

throughout column due to 2-D effects.

u Ion spin-up could also reduce maximum synchronous current, but not seen from
Doppler broadening measurements

Red - vacuum shot
Black - with plasma
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Details of Rapid Flux Build-up Case

BzBθ
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B 
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u FRC transitions to high beta column.  This is only possible steady solution if total
line density is too low to maintain Io′ = 〈ne〉eωa2/2 > 2Be/ µo

u 〈ne〉 = 2.5x1018, ω = 2.2x106, a = 0.2, Be = 0.009:

      Io′ = 18 kA/m, 2Be/
 µo = 14 kA/m
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Flux Build-up Starting From
Low Beta Column
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u Steady state achievable under different operating conditions.

u Flux decay rate after RMF turnoff ⇒ η⊥ ~ 40 µΩ-m.
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Electron rotation appears
synchronous in driven edge

-100

-50

0

50

100

0 10 205 15

0

5

10

-5

-10

shot 4891
Te = 55 eV
t   = 260 µsec

Radius
(cm)

M
ag

ne
tic

 F
ie

ld
 (

G
)

D
en

si
ty

 (
10

18
 m

-3
)

Bz

Bθ

‘n’ = jθ /eωr =
(dBz/dr)/µoeωr

n = (Be
2-Bz

2)/2µokT

u ‘n’ calculated from
synchronous electron
rotation agrees with n
inferred from pressure
balance assuming fixed
‘best fit’ temperature over
region of RMF penetration.

u Very low density at r = 0
and separatrix (rs ~ 20 cm).

u RMF field contributes to
confinement with Be(0) >
Be(rs)
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Estimate of STX Resistivity

u Numerical calculations match measured flux build-up using η⊥ = 40 µΩ-m.

u Flux lifetime without RMF drive τφ = rs
2/16(η⊥µo) ~ 80 µs ⇒ η⊥ = 40 µΩ-m.

u Implied absorbed Ohmic power = η⊥ ∫j2dV ~ 3.5 η⊥(µΩ-m) kW ⇒ 140 kW.

u Ep = 1.5NkTe = 8 J would yield τE = 57 µs.

u STX RMF power supply is 1.5 kJ and decays ~500J in 0.5 ms; ~ 1000kW
with and without plasma.  Best estimate is extra plasma absorbed power
~60kW.  This implies lower η⊥ where current flows.  Better measurements of
absorbed Ohmic power are critical.
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Maximum Energy Input to FRC Determined
by Energy Loss from RMF Supply 

Energy loss from RMF Capacitor
Bank:
Vacuum Discharge  →  1,470 J
Plasma  Discharge   →  1,520 J

            50 J

To eliminate energy spent on initial
ionization and radiation losses:

Vacuum ∆E - Discharge to equilibrium ∆E
         - 20 J

⇒ Max energy into FRC from 0.2 to 0.7 ms = 30 J

     Pmax ≤ 60 kW ± 10 kW    



ICC_2000

0.1                 0.2               0.3                    0.4                  0.5                  0.6     

Avg. Power lost from RMF antenna: PRMF ≈  40 kW

Ohmic power from FRC jθ, jz
(classical η⊥ at kTe = 33 eV)         PΩ  = 40 kW

Power lost through ion equilibration:

     Pei = 2.5x10-33 N·n/Te
1/2  = 6 kW

Power lost due to impurity radiation:
     Prad  = 10-31 nimp·ne·Vol  = 14 kW

Assume the remaining power loss is convective:

⇒ PN = EN dN/dt =  20 kW

During equilibrium phase (dashed lines):

dN/dt = dEp/dt = 0

EN = 5/2 kTe + {5/2 kTe +Eionize} = 3x10-17 J

 ⇒ τN ≈ 2.7 ms

Prior Maximum τN (LSX) ~ 1 ms

FRC Particle Confinement with RMF
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For      15 eV < kTe < 50 eV 
and             0  <  t  < 1 ms

Prad = 10-31 ne nimp ·VolFRC

From CO2 doping experiments:

C ≅ 0.5%,    O ≅  0.5%

N = <ne>·VolFRC =  1.8x1018

nimp = 0.01<ne> = 8x1016 m-3

          Prad ≥ 14 kW
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Low η⊥ Required For Reactor
Efficiency with Bω < 100G

u Empirical flux lifetime scaling: τϕ = rs
2/16D⊥ = 40xs

1/2rs
2(10cm)nm(1020 m-3).

u High Density Resistivity Scaling:

u Need 0.2neωrs
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Better Resistivity Scaling Measured in
Recent Low Density Experiments

u Except for the higher density TCS* case, which is obviously influenced
by impurities, the measured resistivity at low densities is at least a factor
of two better than the LSX based (high density) empirical scaling.

u Considerable improvement is still needed for RMF to be efficient at 1020

m-3 densities.

Device rc rs Be ϕϕp Tt nm D⊥⊥ (m2/s)
(cm) (cm) (kG) (mWb) (eV) (1020) scaled meas

LSX 45 14 8 4.5 1500 10 9 9
LSX 45 22 4 9.5 300 13 6 6
TCS 45 23 1.4 3.7 200 2.5 14 22*
TCS 45 18 1.4 1.8 350 1.4 20 10
FIX 40 16 0.4 0.4 100 0.4 38 11
STX 23 20 0.1 0.35 50 0.05 75 ‘30’
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Development Path

u STX/upgrade will test ability to reach higher Te as RMF power increases.

u TCS will test ability to achieve smaller η⊥ with hot ions as size increases.

u POP device would investigate major physics questions in a TCS sized device.

Parameter STX STX/ug TCS POP Reactor
Rc  (m) 0.25 0.25 0.45 0.50 2.50
Be  (T) 0.01 0.03 0.10 0.3 1.25

ne  (1020 m-3) 0.05 0.15 0.50 1.0 2.0
Te  (keV) 0.05^ 0.15^ 0.25* 1.0* 10*

ω  (106 s-1) 2 2 1 0.5 0.1
Be/µoωnee(rs

2/4) 0.5 0.5 0.25 0.6 0.3
Bω  (G) 25 75 50-75 50 100

γ /λ 12/ ⊥D 12/ ⊥D 2-3/ ⊥D 1.2/ ⊥D 0.6/ ⊥D

φ  (Wb) 0.35x10-3 1.0x10-3 0.01 0.04 4
s 2 5.5 2.3 4.0 20

)s/m(D)m(r)MHz()10(n

)G(B007.0
2

s
2/120
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ω

ω
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λ
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*Ti = Te

   ^Ti  ≈ 1eV
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Ion Spin-up

u Either neutral ion friction, νin or, equivalently, fueling, νf = s/n is
required to reach a steady-state ion velocity viθ = veθ/(1 + miνf/me ν⊥)

u  ν⊥ = 3.5x106 D⊥(m2/s), so would require fueling rate of 103 sec-1 if D⊥ =
1 m2/s to prevent ions from spinning up to 1/2 electron speed.  This is
clearly impractical for a reactor.

u Two Solutions:
– Central fueling at field null will provide outward vr which can greatly

reduce RMF power requirements, and thus RMF torque on electrons.

– Neutral beams can be injected opposite RMF direction providing large
source of oppositely directed angular momentum (since viθ << vti).
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Summary & Conclusions
u RMF current drive has been demonstrated to work for standard FRC

with Bω << Bz.  Well modeled by numerical calculations with
synchronous electron rotation.

u RMF drive necessarily produces edge current which may be stabilizing
influence.

u RMF frequency must be carefully chosen to match FRC parameters.

u Key parameter is effective resistivity which will determine required
RMF strength and power.  Central fueling could greatly reduce RMF
power requirement and mitigate ion spin-up problem.

u Critical experiments will be carried out in the next few years using the
STX and TCS facilities.


